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Highly resolved three-dimensional and two-dimensional simulations of gravity
currents in planar and cylindrical configurations are presented. The volume of
release of the heavy fluid is varied and the different phases of spreading, namely
acceleration, slumping, inertial and viscous phases, are studied. The incompressible
Navier–Stokes equations are solved assuming that the Boussinesq approximation is
valid for small density difference. The simulations are performed for three different
Reynolds numbers (Re): 895, 3450 and 8950 (this particular choice corresponds to
values of Grashof number: 105, 1.5×106 and 107, respectively). Following their sudden
release, the gravity currents are observed to go through an acceleration phase in which
the maximum front velocity is reached. As the interface of the current rolls up, the
front velocity slightly decreases from the maximum and levels off to a nearly constant
value. At higher Re, three-dimensional disturbances grow rapidly and the currents
become strongly turbulent. In contrast, in two-dimensional simulations, the rolled-up
vortices remain coherent and very strong. Depending on the initial Re of the flow
and on the size of the release, the current may transition from the slumping to the
inertial phase, or directly to the viscous phase without an inertial phase. New criteria
for the critical Re are introduced for the development of the inertial phase. Once the
flow transitions to the inertial or viscous phase, it becomes fully three-dimensional.
During these phases of spreading, two-dimensional approximations underpredict the
front location and velocity. The enhanced vortex coherence of the two-dimensional
simulations leads to strong vortex interaction and results in spurious strong time
variations of the front velocity. The structure and dynamics of the three-dimensional
currents are in good agreement with previously reported numerical and experimental
observations.

1. Introduction
Gravity currents (also called density currents) are buoyancy-driven flows which

manifest either as a horizontal current of heavy fluid running below light fluid,
or as a current of light fluid above heavy fluid. In some applications, the gravity
current manifests as a combination of these two, and in this case, they are also called
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intrusions. Gravity currents can be produced with very small density differences (of a
few per cent), yet they can still travel for very long distances (Garcı́a 1992). Examples
of these flows are thunderstorm fronts, volcanic eruptions, oil spills on the ocean, and
snow avalanches (Allen 1985; Simpson 1997).

The need to predict the arrival time of a gravity current’s front and the maximum
spreading distance has motivated the development of relatively simple models (Allen
1985) all the way to detailed simulations (Lee & Wilhelmson 1997a , b; Härtel,
Meiburg & Necker 2000b; Necker et al. 2002, 2005; Özgökmen et al. 2004; Cantero
et al. 2006). The first theoretical attempt to describe the spreading rate of a gravity
current using potential flow theory was made by von Kármán (1940). He showed
that a deeply submerged heavy fluid current of density ρ1 will move into a semi-
infinite lighter environment of density ρ0 with a mean front velocity of uF =

√
2 g′ hF ,

where g′ = g(ρ1 − ρ0)/ρ0 is the reduced gravity and hF is the height of the current.
Benjamin (1968) arrived at the same conclusion with a more precise analysis using the
theory of hydraulic jumps. Shin, Dalziel & Linden (2004) has shown the importance
of including both the front of the gravity current and the backward propagating
disturbance in the analysis.

Following experimental observations, Huppert & Simpson (1980) described the
spreading of a gravity current in three phases: an initial slumping phase where the cur-
rent moves at nearly constant speed, followed by an inertial phase in which the current
moves under the balance of buoyancy and inertial forces, and finally a viscous phase
where viscous effects dominate and balance buoyancy. Power law expressions for the
self-similar evolution of the front have been obtained for both the inertial and viscous
regimes (Fay 1969). Fannelop & Waldman (1971) and Hoult (1972) have shown that
the power law expressions result from a similarity solution of the shallow-water
equations and therefore are valid only sufficiently long after the initial release (see
also Rottman & Simpson 1983; Bonnecaze, Huppert & Lister 1993; Choi & Garcı́a
1995; Huppert 1998; Bonnecaze & Lister 1999; Ungarish & Zemach 2003).

Planar and cylindrical gravity currents are two canonical configurations that have
been studied in the past. The lock-exchange problem in a rectangular channel is
a well-studied example of a planar gravity current, where the heavy fluid moves
away from the lock with a nominally straight front. On the other hand, the release
of a finite column of heavy fluid into a surrounding ambient of light fluid results
in a cylindrical gravity current (Penney et al. 1952; Spicer & Havens 1987). In
the cylindrical configuration the front is nominally circular and propagates radially
outward. In a planar current, as the front propagates, the planform area of the
released heavy fluid increases linearly with front location, whereas in a cylindrical
current, the planform increases quadratically. This difference changes the spreading
rate of the cylindrical current compared to the planar case.

In the lock-exchange problem, as the front of heavy fluid moves away from the lock,
a disturbance is also formed which propagates in the opposite direction into the lock.
In the case of a finite volume release, this backward-propagating disturbance reflects
off the back wall, or the symmetry plane, and begins to propagate forward. The
reflected disturbance travels faster than the front of the gravity current, eventually
catching up with the front. The near constant velocity of the current (the slumping
phase) continues up to this point and, as observed by Rottman & Simpson (1983),
the arrival of the reflected wave at the front initiates the transition to the inertial
phase. The volume of heavy fluid (per unit width of the channel) released behind the
lock plays an important role as to when this transition to the inertial phase occurs.
In the limit of an infinite release, the slumping phase persists indefinitely for high
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Reynolds numbers (Re). At lower Re, viscous effects will eventually reduce the front
velocity, and in the case of finite releases the inertial phase may not exist at all, and
the current may directly transition from the slumping phase to the viscous phase
(Rottman & Simpson 1983; Amy et al. 2005). Although the physical mechanism of
this transition has not been nearly as well understood, it can be expected that the
volume of release will also play a role as to when such direct transition from the
slumping to the viscous phase will occur.

If the effect of the sidewalls can be neglected, then the planar current can
be considered statistically two-dimensional and homogeneous along the spanwise
direction. Similarly, a cylindrical current is statistically axisymmetric and homo-
geneous along the circumferential direction. The two-dimensionality of the planar
current and the axisymmetry of the cylindrical current have been exploited both in
theoretical formulations and in computations (Daly & Pracht 1968; Droegemeier &
Wilhelmson 1986, 1987; Terez & Knio 1998a , b; Hallworth, Huppert & Ungarish
2001; Özgökmen & Chassignet 2002; Ungarish & Zemach 2003; Birman, Martin &
Meiburg 2005; Patterson et al. 2006). At high Re, gravity currents are strongly three-
dimensional and fully turbulent. In such situations, the two-dimensionality or the
axisymmetry of the current is only in a statistical sense.

The effect of three-dimensionality on the speed of the current can be expected
to be significant. For example, Cantero (2002) and Cantero et al. (2003) reported
numerical simulations of planar gravity currents developing over a favourable slope
and compared the results with experimental data. They found that a three-dimensional
simulation captures the experimental observations more accurately and that the two-
dimensional model lags behind. Similar results have been reported by Necker et al.
(2002) in the context of particulate gravity currents. Considering the front of the heavy
fluid as a bluff body intruding into the light fluid, a crude analogy with the drag force
on a cylindrical body subjected to crossflow can be drawn for which two-dimensional
model significantly overpredicts the drag force (Mittal & Balachandar 1995). Thus, a
weaker resistance to the flow can be expected in the case of a three-dimensional front
than for the case of a coherent two-dimensional front, which could explain the faster
spreading of three-dimensional currents.

The primary objective of the present work is to study systematically the propagation
of gravity currents and to investigate the influence of key parameters on the front
velocity as well as the transition between phases. In this work, we present results from
highly resolved simulations of planar and cylindrical gravity currents for varying Re.
For the planar case, we consider both small and large release volumes. A detailed
comparison of the results illustrates the role of the planar vs. cylindrical nature of the
current, as well as the effect of the volume of release on the mean velocity of the front
and the transition between the different phases. In each of these cases we consider
both fully resolved three-dimensional simulations and corresponding two-dimensional
or axisymmetric simulations for planar and cylindrical configurations, respectively.
The three-dimensional structure of the propagating front is also explored for both
the planar and cylindrical configurations.

2. Numerical formulation
The physical configuration of the gravity currents is shown in figure 1. At the start

of the computation the region with heavy fluid of density ρ1 (the shaded region in
figure 1) is separated from the light fluid of density ρ0. In the planar case, the heavy
fluid is a slab of half-width x0 along the flow direction. In the present simulations, the
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Figure 1. Sketch of a gravity current and the nomenclature used in this work. The flow is
started from the initial condition shown by the shaded region between dashed lines. As the
flow evolves, the intruding front develops the structure of a head followed by a body.

slab of heavy fluid extends over the entire height H of the channel (full-depth release)
and infinitely along the spanwise (y) direction. In the cylindrical case, the region of
heavy fluid is a cylinder of radius r0 and height H .

We consider flows in which the density difference is small enough that the Boussinesq
approximation is valid. The dimensionless equations read

∂ũi

∂ t̃
+ ũk

∂ũi

∂x̃k

= ρ̃ e
g
i − ∂p̃

∂x̃i

+
1

Re

∂2ũi

∂x̃k∂x̃k

, (2.1)

∂ũk

∂x̃k

= 0, (2.2)

∂ρ̃

∂t̃
+

∂

∂x̃k

(ρ̃ũk) =
1

Sc Re

∂2ρ̃

∂x̃k∂x̃k

. (2.3)

Here, ũi is the dimensionless velocity vector, and e
g
i is a unit vector pointing in the

gravity direction. Any variable with a tilde is to be understood as dimensionless.
The channel height H is the length scale and we adopt U =

√
g′H as the velocity

scale. Consequently, the time scale is H/U . The dimensionless density and pressure
are given by

ρ̃ =
ρ − ρ0

ρ1 − ρ0

, p̃ =
p

ρ0 U 2
. (2.4)

The two dimensionless parameters in equations (2.1)–(2.3) are the Reynolds and
Schmidt numbers defined as

Re =
U H

ν
=

√
g′H 3

ν2
, Sc =

ν

κ
, (2.5)

respectively, where ν is the kinematic viscosity and κ is the diffusivity of temperature
or chemical species producing the density difference. The ratios x0/H (planar case) or
r0/H (cylindrical case) are additional geometric parameters that control the volume
of initial release. In the planar configuration, we consider the cases of both a small
volume of release with x̃0 = 1 (small-release case) and a large volume of release with
x̃0 = L̃x/4 (large-release case), where L̃x is the length of the computational domain in
the spreading direction. Thus, in the large-release simulations, half the computational
domain is filled with the heavy fluid and serves to approximate the infinite-release
case.

In the three-dimensional planar simulations, the governing equations are solved in
a rectangular box of size L̃x × L̃y × L̃z. Periodic boundary conditions are employed
along the streamwise (x̃) and spanwise (ỹ) directions. Periodicity along the streamwise
direction implies that a periodic array of planar gravity currents, each initially
separated by a distance L̃x , is being simulated. The box is typically taken to be very
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Geometry Re

(domain size)
895 3450 8950

Planar Two-dimensional Spectral Spectral Spectral
(large release (34 × 1) (1056 × 80) (1280 × 110) (2048 × 180)
setting) Three-dimensional Spectral Spectral Spectral

(34 × 1.5 × 1) (1056 × 64 × 80) (1280 × 84 × 110) (2048 × 112 × 180)
Planar Two-dimensional Spectral Spectral Spectral

(small release (25 × 1) (768 × 80) (924 × 110) (1536 × 180)
setting) Three-dimensional Spectral Spectral Spectral

(25 × 1.5 × 1) (768 × 64 × 80) (924 × 84 × 110) (1536 × 112 × 180)
Cylindrical Axisymmetry Multi-domain Multi-domain Multi-domain

(small release (7.5 × 1) (408 × 71) (568 × 111) (1572 × 201)
setting) Three-dimensional Spectral∗ Spectral Spectral

(15 × 15 × 1) (280 × 280 × 72) (512 × 512 × 110) (880 × 880 × 180)

Table 1. Numerical simulations performed for this study. The size of the domain, numerical
method and resolution is specified for each geometrical setting. The size of the domain
is specified as (L̃x × L̃y × L̃z) in the three-dimensional configuration, as (L̃x × L̃z) in the
two-dimensional planar configuration, and as (L̃r × L̃z) in the axisymmetric configuration. The
resolution is specified as (Nx × Ny × Nz) in the three-dimensional configuration, as (Nx × Nz) in
the two-dimensional planar configuration, and as (Nr × Nz) in the axisymmetric configuration.
∗The domain size for this run is (10 × 10 × 1).

long along the streamwise direction (25 or more channel heights) in order to allow
free unhindered development of the current for a long time (see figure 1). Based
on simulation results, we observe that the interaction of the front with the adjacent
currents across the periodic boundaries can be neglected until the front reaches
about 1 dimensionless unit from the boundaries. Along the spanwise direction, the
width of the periodic domain is chosen to be 1.5 dimensionless units, which is
adequate for including several spanwise lobe and cleft structures. These choices for
the computational domain are consistent with that of Härtel et al. (2000b).

The three-dimensional cylindrical simulations are also in a rectangular box of size
L̃x × L̃y × L̃z; however, since the current spreads radially outward along the entire

(x̃, ỹ)-plane, we choose L̃x = L̃y . Periodic boundary conditions are employed along
the (x̃) and (ỹ) directions and thus here we approximate a doubly periodic array
of cylindrical gravity currents with a lateral spacing of L̃x = L̃y along the horizontal
directions. The planform of the periodic box is typically taken to be very large (15
channel heights) in order to allow unhindered development of the current for a long
time. As in the planar case, the interaction of the radially advancing front with the
adjacent currents across the periodic boundaries becomes significant only as the front
reaches to within 1 dimensionless unit of the boundaries.

The two-dimensional planar simulations are in a rectangular domain of size
L̃x × L̃z and the flow is taken to be invariant along the spanwise (ỹ) direction.
The axisymmetric cylindrical simulations are on the (r̃ , z̃) (radial–axial)-plane in a
rectangular computational domain of size L̃r × L̃z, and the flow is invariant along the
circumferential (θ) direction.

In this work, we have employed two different numerical techniques: a spectral
multi-domain code (Deville, Fischer & Mund 2002) and a fully de-aliased pseudo-
spectral code (Canuto et al. 1988). The spectral multi-domain code was used to
simulate axisymmetric cylindrical currents whereas the spectral code was used in all
other simulations. Table 1 gives all the simulations to be discussed in this paper.



6 M. I. Cantero, J. R. Lee, S. Balachandar and M. H. Garcia

In the spectral code, Fourier expansions are employed for the flow variables along
the horizontal directions (x̃ and ỹ). In the inhomogeneous vertical direction (z̃),
a Chebyshev expansion is used with Gauss–Lobatto quadrature points (Canuto
et al. 1988). The flow field is time advanced using a Crank–Nicolson scheme for
the diffusion terms. The advection terms are handled with the Arakawa method
(Durran 1999) and advanced with a third-order Runge–Kutta scheme. The buoyancy
term is also advanced with a third-order Runge–Kutta scheme. More details on the
implementation of this numerical scheme can be found in Cortese & Balachandar
(1995). In the simulations, periodic boundary conditions are enforced along the
horizontal directions for all variables. At the top and bottom walls, no-slip and
zero-gradient conditions are enforced for velocity and density, respectively.

The spectral multi-domain code employs a domain decomposition methodology
along the radial direction (r̃) (Balachandar & Parker 2002). The entire computational
domain of length L̃r is divided into Ne subdomains. Within each subdomain,
Chebyshev expansions are used along both radial (r̃) and vertical (z̃) directions. The
nonlinear and buoyancy terms are treated explicitly using the third-order Adams–
Bashforth scheme. The diffusion terms are treated implicitly with the Crank–Nicolson
scheme. Appropriate symmetry boundary conditions are employed for all variables
along the centreline (r̃ = 0). At the outer radial boundary (r̃ = L̃r ), a non-reflecting
outflow boundary is used (Mittal & Balachandar 1996). The two different codes were
verified to yield identical results for the two-dimensional planar problem.

In all the configurations, the initial density was smoothly varied from 0 to 1 over a
thin region located at the interface. The details of the initial conditions used in this
work can be found in Cantero et al. (2006). The flow was started from rest with a
minute random disturbance prescribed in the density field.

In this work, three different Re are considered: Re = 895, 3450 and 8950. These
correspond to Grashof numbers of 105, 1.5 × 106 and 107, respectively, and the
intermediate case can be directly compared with that of Härtel et al. (2000b). As
will be discussed below, with increasing Re, the complexity of the flow increases and
thus, the simulation at the higher Re requires increased resolution. The numerical
resolution for each simulation was selected to have between 6 and 8 decades of decay
in the energy spectrum for all the variables. The time step was selected to produce a
Courant number smaller than 0.5.

3. Theoretical background
Several theoretical and empirical models have been proposed to predict the front

velocity during the slumping, inertial and viscous phases of the current. In this section,
we will briefly describe some of the models that are of immediate relevance to the
subsequent discussion.

3.1. Slumping phase

Benjamin (1968) analysed the flow in a planar two-dimensional emptying cavity using
the hydraulic theory in a frame of reference moving with the front. The only free
parameter is the ratio of the depth of the current (hF ) to the depth of the ambient
fluid (H ). The theory does not distinguish between head height and body height and,
in relation to figure 1, hB =hH =hF . Benjamin derived the following expression for
the Froude number of the front

FB =
uF√
g′ H

=

[
h̃F (2 − h̃F )

(
1 − h̃F

1 + h̃F

)]1/2

, (3.1)
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where h̃F = hF /H is the dimensionless current height and uF is the dimensional front
velocity. Benjamin argued that without external energy input, the largest possible
current height can only be hF =H/2. In this limit of h̃F → 1/2, FB → 1/2, and energy
losses are associated with currents of smaller depth. Benjamin further argued that
dissipation is an essential ingredient of gravity current flow and therefore hF /H �
0.347. With hF /H = 0.347, a maximum dissipation is achieved within Benjamin’s
framework.

Shin et al. (2004) revisited and extended Benjamin’s theory and stressed the need
to take into account the exchange between the advancing front of the gravity current
and the backward-propagating disturbance. They showed that for both the full-depth
and partial-depth lock-exchange releases, the height of an energy-conserving current
is half the initial depth of the release. The corresponding speed of the current depends
only on the dimensionless initial depth of the release (D̃)

FS = 1
2

√
D̃(2 − D̃). (3.2)

The Froude number definition in (3.2) is the same as in (3.1) and the subscripts B

and S indicate relations proposed by Benjamin (1968) and Shin et al. (2004). In the
limit of full-depth release (i.e. D̃ → 1), the above expression yields the same Froude
number as Benjamin’s expression.

Based on experimental measurements, Huppert & Simpson (1980) proposed the
following empirical expression for the Froude number (defined as in (3.1)):

FHS =

{
1
2
h̃

1/6
F if 0.075 � h̃F � 1,

1.19 h̃
1/2
F if 0 � h̃F � 0.075,

(3.3)

where h̃F is to be interpreted as the dimensionless height of the body of the current.
This empirical expression predicts that the Froude number monotonically decreases to
zero as the height of the current decreases to zero. Equation (3.3) yields FHS = (1/2)7/6

in the limit h̃F → 1/2, which is somewhat lower than the value 1/2 predicted by the
hydraulic theories of both Benjamin (1968) and Shin et al. (2004). In the limit of

deeply submerged current (h̃F → 0), (3.3) yields FHS → 1.19
√

h̃F , which is higher than

FS →
√

h̃F predicted by Shin et al. (2004), but lower than FB →
√

2h̃F predicted by
Benjamin (1968).

3.2. Inertial phase

Transition from the slumping to the inertial phase occurs when the reflected back-
propagating wave catches up with the front (Rottman & Simpson 1983). It is accepted
that for a planar current, the transition happens after the front has travelled between
5 and 9 lock lengths (Rottman & Simpson 1983; Metha, Sutherland & Kyba 2002;
Marino, Thomas & Linden 2005). The asymptotic behaviour of the current in the
inertial phase has been established to be (Fay 1969; Fannelop & Waldman 1971;
Hoult 1972; Huppert & Simpson 1980; Rottman & Simpson 1983)

x̃F = ξp (h̃0x̃0 t̃ 2)1/3, ũF = 2
3
ξp(h̃0x̃0)

1/3 t̃−1/3 (3.4)

for planar currents, and

r̃F = π1/4ξc h̃
1/4
0 (r̃0 t̃)1/2, ũF = 1

2
π1/4ξch̃

1/4
0 r̃

1/2
0 t̃−1/2 (3.5)

for cylindrical currents. Here, x̃F and r̃F are the dimensionless streamwise and radial
location of the planar and cylindrical currents, respectively. The initial size of the
release is characterized by its height h̃0, and length x̃0 or radius r̃0. The difference
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between the theories is in the constants ξp and ξc. For the planar current, ξp = 1.6
and 1.47 have been proposed by Hoult (1972) and Huppert & Simpson (1980),
respectively, whereas Marino et al. (2005) suggests a range from 1.35 to 1.8. For
the cylindrical current, Hoult (1972) and Huppert & Simpson (1980) have proposed
ξc = 1.3 and 1.16, respectively.

3.3. Viscous phase

By balancing the buoyancy and viscous forces in a boundary-layer approximation,
Hoult (1972) obtained the following self-similar solution for a planar gravity current

x̃F = ξpHt h̃
1/2
0 x̃

1/2
0 Re1/8 t̃ 3/8, ũF = 3

8
ξpHt h̃

1/2
0 x̃

1/2
0 Re1/8 t̃−5/8, (3.6)

where ξpHt = 1.5. The corresponding results for a cylindrical current are

r̃F = ξcHt h̃
1/3
0 r̃

2/3
0 Re1/12 t̃ 1/4, ũF = 1

4
ξcHt h̃

1/3
0 r̃

2/3
0 Re1/12 t̃−3/4, (3.7)

where ξcHt = 1.38. The viscous force considered in the analysis of Hoult (1972) is from
the interface between the heavy and light fluids. A revised analysis that accounts
for the viscous effect over a rigid horizontal surface was performed by Huppert
(1982). The resulting self-similar solutions for the viscous phase are different from
those given in (3.6) and (3.7), and are given by

x̃F = ξpHp h̃
3/5
0 x̃

3/5
0 Re1/5 t̃ 1/5, ũF = 1

5
ξpHp h̃

3/5
0 x̃

3/5
0 Re1/5 t̃−4/5, (3.8)

for planar currents where ξpHp = 1.133, and by

r̃F = ξcHp h̃
3/8
0 r̃

3/4
0 Re1/8 t̃ 1/8, ũF = 1

8
ξcHp h̃

3/8
0 r̃

3/4
0 Re1/8 t̃−7/8 (3.9)

for a cylindrical current where ξcHp = 1.197.

4. Results and discussion
4.1. Current height

The height of the current can be defined in a few different ways. Shin et al. (2004)
and Marino et al. (2005) define a local equivalent height in an unambiguous way as

h̃(x̃, ỹ, t̃) =

∫ 1

0

ρ̃ dz̃ , (4.1)

and this definition is adopted herein. Thus, at locations where the entire layer is
occupied by the heavy fluid, the dimensionless height is unity, whereas at locations
where the light fluid fills the entire layer, the height is zero. The local current height
can then be averaged over the span in the case of a three-dimensional planar current,
or along the circumferential direction in the case of a three-dimensional cylindrical
current, to define the span-averaged current height as

h(x̃, t̃) =
1

L̃y

∫ L̃y

0

h̃ dỹ or h(r̃ , t̃) =
1

2π

∫ 2π

0

h̃ dθ . (4.2)

(Any variable with an overbar is to be understood as dimensionless span-averaged
quantity.) The above definition for the planar current is equivalent to the width-
averaged dye concentration obtained in experiments (Shin et al. 2004; Marino et al.
2005).

Figure 2 shows the time evolution of the large-release planar gravity current at Re

895 and 8950 plotted in terms of the span-averaged equivalent current height. The
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Figure 2. Time evolution of the large-release planar gravity current plotted in terms of
the span-averaged equivalent current height as defined by (4.2). Contours are shown
with time intervals of 3.54 time units. (a) Three-dimensional simulation for Re = 895;
(b) three-dimensional simulation for Re = 8950; (c) two-dimensional simulation for Re = 8950.
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Figure 3. As for figure 2, but for small-release planar gravity current and time intervals of
7.08 time units.

corresponding results for the small-release planar current and cylindrical current are
shown in figures 3 and 4, respectively. At Re =895 both the planar and cylindrical
currents are laminar and remain two-dimensional and axisymmetric, respectively. At
the higher Re, the currents are highly three-dimensional and appear turbulent at
both the head and over the entire body of the current. Here, the results for both the
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Figure 4. Time evolution of the cylindrical gravity current plotted in terms of the circumferen-
tially averaged equivalent current height as defined by (4.2). Contours are shown with
time intervals of 3.54 time units. (a) Three-dimensional simulation for Re =895; (b) three-
dimensional simulation for Re = 8950; (c) axisymmetric simulation for Re = 8950.

two-dimensional (or axisymmetric in case of cylindrical current) and three-dimensional
simulations, are plotted.

At the lower Re, the current appears smooth with a well-defined raised head
and an extended body. In the large-release cases (figure 2) the height of the raised
head can be observed to be less than half the initial depth of release and can be
observed to slowly decrease with time. After a short dip behind the head, the height
of the current gently increases to half the channel height (by symmetry h̃ =0.5 at
x̃ = 8.5). Birman et al. (2005) reported similar results for large-release currents with
slip boundary conditions from two-dimensional highly resolved simulations. Here we
extend these results to two more cases (planar small-release and cylindrical) for two-
dimensional and three-dimensional simulations with no-slip boundary conditions. In
the small-release cases, the current has a well-defined raised head and an extended
body of near constant height, which can be discerned well at later times. Also at early
times, a backward-travelling disturbance wave can be seen as a second peak, which
reflects back off the symmetry plane (x̃ = 0 or r̃ = 0). At later times, it is difficult to
identify this reflected disturbance unambiguously. Nevertheless, it is likely that such
a disturbance catches up with the front and influences the propagation speed (see
Simpson 1982; Rottman & Simpson 1983).

At the higher Re, very large undulations can be seen in the height of the current
at early times. These undulations are the result of strong roll-up of the current
owing to Kelvin–Helmholtz instability of the shear layer. At much later times, the
strong effect of roll-up observed during the early stages of the current is somewhat
mitigated and the undulations in the current height are reduced. The effect of roll-
up is much stronger in the two-dimensional simulations, since three-dimensionality
helps to break up the spanwise or circumferential coherence. The averaged structure
and evolution of the large- and small-release currents seen in figures 2 and 3 are
qualitatively similar to the width-averaged experimental results of Shin et al. (2004)
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and Marino et al. (2005), respectively. At higher Re, when the flow is highly turbulent,
the three-dimensional small-release front arrives earlier than the corresponding two-
dimensional or axisymmetric approximation (see figures 3 and 4). This observation
suggests that the three-dimensional currents are faster than the two-dimensional (or
axisymmetric) approximations.

4.2. Mean front location and velocity

The mean front location, xF (t) (or rF (t)), can be unambiguously defined as the
location where the span-averaged equivalent height, h, becomes smaller than a small
threshold δ. Diffusion and numerical noise prevents h from being exactly zero. The
above definition is insensitive to the exact value of δ as long as it is smaller than 0.05,
and here we use δ = 0.01. The distance the front has advanced, xF − x0 (or rF − r0),
is shown as a function of time in figure 5. The result for all the two-dimensional and
three-dimensional large-release planar cases at the three different Re are shown in
figure 5(a). The corresponding results for the small-release planar and the cylindrical
currents are shown in figures 5(b) and 5(c), respectively. In the log–log plots, the
dashed straight line corresponds to a slope of constant front velocity. It can be seen
that in all the planar cases, after a brief initial period of acceleration, a period of
near constant velocity is realized. The constant velocity, however, seems to depend on
Re, at least over the limited range under consideration. Although subtle, departure
from the constant velocity can be observed at later times for the small-release cases.
The large-release cases continue to exhibit constant velocity over the entire duration
of simulation. For the cylindrical cases, a period of constant velocity is not clearly
identified. There is, however, a brief period of rather slower variation before the more
pronounced decay.

The mean front velocity is computed as

uF =
dxF

dt̃
(4.3)

for planar cases and in an analogous way for the cylindrical configurations. The front
velocity as a function of t̃ for the large-release planar cases is shown in the inset of
figure 5(a). The front velocity of the small-release planar and cylindrical currents are
shown in the insets in figures 5(b) and 5(c), respectively. An acceleration phase where
the velocity sharply increases, a slumping phase where the velocity is nearly constant
(planar currents) or varies rather slowly (cylindrical currents), and an inertial and/or
viscous phase where the front velocity decays are clearly identifiable. In what follows,
these different phases will be discussed in greater detail.

4.2.1. Acceleration phase

In the acceleration phase, the front velocity rapidly increases from zero, reaches
a maximum and subsequently falls slightly before approaching a constant value.
This early stage of the flow was also observed in experiments by Martin & Moyce
(1952a , b) and in two-dimensional simulations by Härtel, Meiburg & Necker (1999).
Here, we extend the analysis to three-dimensional simulations, and link the process to
the current interface roll-up dynamics. With our simulations, we study the idealized
case of an instantaneous release with the gate lifted infinitely rapidly. Nevertheless,
the study of this phase is important because it puts in evidence the effect of
interface friction on the front speed. During this phase of spreading, three-dimensional
disturbances introduced into the current in the initial condition have not grown to
sufficient amplitude and the currents are therefore predominantly two-dimensional
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Figure 5(a, b). For caption see facing page.

(or axisymmetric). Thus, the velocities of the current predicted by three-dimensional
and two-dimensional simulations are nearly identical in all cases considered.

Figure 6 shows the front velocity as a function of the distance travelled by the front
during the acceleration phase. The maximum front velocity increases with increasing
Re. In the large-release planar cases, the peak values of the front velocity are 0.411,
0.465 and 0.489 at Re =895, 3450 and 8950, respectively. Based on this trend, the
peak front velocity can be expected to level off and become Re-independent at even
higher Re. Furthermore, in all the planar and cylindrical cases, the peak front velocity
occurs at a distance of about 0.3H from the lock-location (see figure 6). This result
is independent of the volume released or the strength of the current (i.e. Re of the
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Figure 5. Time evolution of front location for all the simulations in table 1. (a) Large-release
planar current; (b) small-release planar current; (c) cylindrical current. The dashed lines
represent a constant velocity spreading slope, that is xF − x0 ≈ t̃ or rF − r0 ≈ t̃ . The insets
show the corresponding time evolution of the front velocity. For the insets, the dashed lines
represent the theoretical value from the hydraulic theories of Benjamin (1968) and Shin et al.
(2004) developed for planar currents.

current) for the conditions of our simulations. In terms of time, at Re = 8950, the
peak occurs at about one dimensionless time unit after the release, but at lower Re,
the peak occurs slightly later, because of the lower current speed.

The cylindrical currents also go through a peak in the front velocity; however, these
peaks are, in general, lower than the corresponding planar values. The Re values for
the different simulations presented in table 1 are based on initial conditions. As the
current advances from the lock, the effective depth of the heavy fluid decreases and
the instantaneous Re, defined based on this effective depth, also decreases. At the
instance of peak velocity, using the definition of Re (equation (2.5)) and the mass
balances x0 h0 = xF hF and r2

0 h0 = r2
F hF , an instantaneous Re can be defined as

Repeak = Re(x0/xpeak)
3/2, Repeak = Re(r0/rpeak)

3, (4.4)

for the planar and the cylindrical cases, respectively. If we use the fact that xpeak −
x0 ≈ rpeak − r0 ≈ 0.3, then the instantaneous Re at the timess of peak velocity are
about 1.5 and 2.2 times lower than the initial Re for the small-release planar and
cylindrical currents, respectively. Owing to the quadratic increase in planform area as
it advances, the strength of the cylindrical current measured in terms of instantaneous
Re falls off more rapidly. The observed lower peak velocity for the cylindrical current
is consistent with its faster decay in strength. In the large-release planar cases, owing
to the large initial release volume (x0 = 8.5), we now have xpeak/x0 ≈ 1.04. As a result,
at the time of peak velocity, the instantaneous Re has fallen by only 6%. The inset in
figure 6 shows a log–log plot of the peak velocity, uF,peak , as a function of the Repeak .
There is better collapse of uF,peak as a function of Repeak . Admittedly the above
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Figure 6. Front velocity during the acceleration phase as a function of distance travelled
for all the simulations in table 1. The dashed line represents the theoretical value from the
hydraulic theory by Benjamin (1968) and Shin et al. (2004). The maximum of the front velocity
is reached at xF − x0 ≈ 0.33, regardless of geometrical configuration and Re. LP, large-release
planar current; SP, small-release planar current; C, cylindrical current. The inset figure shows
the peak velocity, uF,peak , in the acceleration phase as a function of Repeak as defined by
(4.4). The plot is in log–log scale. The collapse of uF,peak with Repeak provides support for the
difference in peak velocity for the different geometrical settings.

estimates are crude, but they provide qualitative support for the observed differences
in peak velocity between the large- and small-release planar, and cylindrical currents.

The rapid increase in front velocity is to be expected, but the slight decrease before
reaching a near constant value requires further investigation. A close look at the front
during the acceleration phase is shown in figure 7, where, at several time instances,
the front marked by the contour of span-averaged ρ̃ = 0.5 is plotted along with span-
averaged spanwise vorticity contours for the three-dimensional small-release planar
case at Re = 8950. The results for all other cases are qualitatively similar. At around
t̃ = 0.8, the head of the current, as indicated by the ρ̃ =0.5 contour begins to lift up.
Correspondingly, a local peak in spanwise vorticity begins to develop (not yet visible
in the plot) indicating an incipient roll-up process. The roll-up process intensifies until
t̃ ≈ 2.5, which corresponds to about xF − x0 ≈ 1 when the front velocity levels off to a
constant value (see figure 6). The decrease in front velocity following the peak clearly
occurs alongside the roll-up of the interface between the advancing heavy and the
retreating light fluid. Similar findings were reported by Härtel et al. (1999) for the
case of slip surfaces, indicating that the bottom boundary layer plays no role in this
process.

Simple arguments based on gravitational free fall starting from rest can be made
to obtain a scale estimate for the dimensional acceleration time to peak velocity as
tpeak ≈ uF,peak/g

′. The scale for the front location at peak velocity can correspondingly
be estimated as xpeak − x0 ∝ H . The computational results are in agreement with
these simple scale estimates.
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Figure 7. Flow evolution during the acceleration phase for the three-dimensional small-release
planar current for Re = 8950. The dashed line shows the interface between the heavy and light
fluids visualized by the span-averaged density contour ρ̃ =0.5. Solid lines represent contours of
span-averaged spanwise vorticity. The front accelerates from rest and reaches the peak velocity
at t̃ ≈ 1 (see also insets in figures 5 and 6). At this time, the roll-up of the interface begins
and continues to develop until t̃ = 2.5 (xF − x0 ≈ 1), when deceleration of the front ends, and
a constant front velocity is reached.

4.2.2. Slumping phase

From the insets in figure 5, it can be observed that both the large- and small-release
planar cases approach a near constant velocity after the acceleration phase. In the
cylindrical currents, a period of near constant velocity is not observed. The velocity,
however, shows a brief period of rather slower variation before exhibiting a more
pronounced decay of t̃−1/2 in the inertial phase (this can be better seen in figure 8).
Here, we take the duration of slow variation to be the approximate slumping phase
and obtain a mean value for the average slumping phase velocity.

The near constant velocity of the slumping phase for the different cases considered
herein is shown in table 2 along with previously reported results from experiments
and numerical simulations. We observe from our simulations that the front velocity
in the slumping phase remains the same for both the large- and small-release planar
cases, i.e. the constant velocity is independent of the released volume. It is, however,
dependent on the planar vs. cylindrical nature of the current and also shows a
Reynolds-number dependence, over the range considered. Furthermore, from the
insets in figure 5, it can be observed that the front velocity in the slumping phase
is predicted well by two-dimensional approximations. Necker et al. (2002) reported
similar results in the context of small-release planar particulate gravity currents. Here,
we extend this analysis to large-release planar currents and cylindrical currents.



16 M. I. Cantero, J. R. Lee, S. Balachandar and M. H. Garcia

10–1 100 101 102
10–2

10–1

100

3D Re = 895
3D Re = 3450
3D Re = 8950
theory - SP - Fp,sl = 0.5
theory - IP - Huppert & Simpson (1980)
theory - VP - Huppert (1982) for Re = 8950
theory - VP - Hoult (1972) for Re = 8950
exp - Re = 6360 - h0/H = 1 - x0/H = 1 - Marino et al. (2005)
exp - Re = 8620 - h0/H = 1 - x0/H = 1 - Marino et al. (2005)

uF
-

(a)

t

3D Re = 895
3D Re = 3450
3D Re = 8950
theory - SP - Fp,sl = 0.5
theory - IP - Huppert & Simpson (1980)
theory - VP - Huppert (1982) for Re = 8950
theory - VP - Hoult (1972) for Re = 8950
exp - Re = 152000 - h0/H = 0.965 - r0/H = 1.25 - Hallworth et al. 2001

~t̃ 0

~t̃ –4/5

~t̃ –1/3

~t̃ –5/8

~t̃ 0

~t̃–1/2

~t̃–3/4

~t̃–7/8

~

(b)

10–1 100 101 102
10–2

10–1

100

uF
-

Figure 8. (a) Time evolution of the front velocity for planar currents with small release
from three-dimensional simulations. The plot also includes experimental data from two of the
lower Re experiments from Marino et al. (2005) with x̃0 = 1 and h̃0 = 1. Included also are the
theoretical predictions for all the phases of spreading. The viscous phase predictions are for
Re = 8950, r̃0 = 1 and h̃0 = 1. (b) Time evolution of the front velocity for cylindrical currents
from three-dimensional simulations. The plot also includes experimental data from experiment
S2 by Hallworth et al. (2001) with r̃0 = 1.25 and h̃0 = 0.965, and the theoretical predictions for
all the phases of spreading. For this case, the planar case slumping phase theory prediction is
used. The viscous phase predictions are for Re = 8950, r̃0 = 1 and h̃0 = 1.

The large- vs. small-release planar cases examine two basic effects of the aspect
ratio (length over height) of the release, which varied from 8.5 for the large release
to 1 for the small release, on the front velocity. The first is the effect on the value
of the front velocity; the second is the duration of the constant velocity or slumping
phase. Based on the similarity in the behaviour of the current front velocity during
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Planar Planar
Reference Re large small Cylindrical

Present work three-dimensional 895 0.361 0.361 0.318
Present work three-dimensional 3450 0.407 0.407 0.368
Present work three-dimensional 8950 0.421 0.421 0.408
Huppert & Simpson (1980)* 0.445
Huppert & Simpson (1980) Exp. 5 25 900 0.402
Rottman & Simpson (1983) 9900–56 000 0.45
Bonnecaze et al. (1995) 33 950 0.42
Härtel et al. (2000b) three-dimensional 3450 0.402
Härtel et al. (2000b) two-dimensional ∼10 900 0.429
Necker et al. (2002) three-dimensional† 6325 0.409
Shin et al. (2004) 1000 < 0.45
Marino et al. (2005) 2790–133 000 0.45
Hallworth et al. (2001) 152 000 0.42

Table 2. Mean front velocity, uF , in the slumping phase, with results for the present work from
three-dimensional simulations. For comparison, previously published data is also presented.
Data by Härtel et al. (2000b) and Necker et al. (2002) are from highly-resolved numerical
simulations, and data by Huppert & Simpson (1980), Rottman & Simpson (1983), Shin et al.
(2004), Marino et al. (2005) and Hallworth et al. (2001) are from laboratory experiments. For
the cylindrical currents average values during the period of slow variation are reported, which
are representative of the mean velocity during the slumping phase.
∗Based on (3.3) with h̃F = 1/2.
†Necker et al. (2002) report the front location for particulate gravity currents and also a case
with zero particle settling velocity, which was used here.

the acceleration and the slumping phases, it can be concluded that the aspect ratio
does not affect significantly the value of the front velocity during these two phases of
spreading, despite the currents looking structurally very different owing to the nature
of the release.

The aspect ratio has an effect, however, on the duration of the slumping phase. In
the large-release cases, the constant velocity phase persists until the end of the simu-
lation for the larger two Re. For the lower Re, viscous effects reduce the front velocity
for t̃ > 10. In the small-release cases, however, the constant velocity slumping phase
extends over only a finite period for all the Re. Figure 8 presents the front velocity for
the three-dimensional finite-volume release simulations, together with the scaling laws
presented in the theory section. Figure 8(a) presents the results for the small-release
planar case for the three Re considered, and figure 8(b) presents the results for the
cylindrical case for the three Re considered. For comparison, this figure also includes
experimental data from Marino et al. (2005) for the planar case at Re = 6360 and
8620 with x0 = 1 and h0 = 1, and from Hallworth et al. (2001) for the cylindrical
case at Re = 1.52 × 105, r0 = 1.25 and h0 = 0.965. In this last case, the comparison is
not totally fair because the initial condition geometric parameters r0 and h0 are not
exactly 1. Nevertheless, the agreement of our numerical results with the experimental
data is good for both cases. Further comparison with more experiments is presented
in the following sections.

From figure 8(a), it can be estimated that in the small-release planar case at
Re =8950, the constant-velocity phase is observed over 3 < t̃ < 12. The corresponding
front location interval is 1 <xF − x0 < 5 (5 lock lengths). During this period, the
dimensionless height of the current at the head remains nearly constant at around 0.4
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(see figure 3), which is in very good agreement with the experimental results of Marino
et al. (2005). This indeed is also the maximum height of the current, and it continues
to decrease upstream of the head. For the cylindrical case, it can be estimated from
figure 8(b) that for Re = 8950 the nearly constant-velocity phase is observed over
2 < t̃ < 4.5. This corresponds to the front location interval 0.4 <rF − r0 < 1.7 (1.7
lock radii). The predicted value of the front velocity for the larger Re simulation is
0.408, which is only about 3% lower than the value of Hallworth et al. (2001) at
Re = 152 000 (see table 2).

The dimensionless front velocity (or the Froude number) of the planar currents
is substantially lower than 1/2, the value predicted by the hydraulic theories for
full-depth release. This result is consistent with the numerical predictions of Härtel
et al. (2000b) and the experimental observation of Shin et al. (2004) that the currents
in their constant-velocity phase are consistently slower than the theoretical prediction
by as much as 10% (see table 2). In particular, for the full-depth release, the Shin
et al. (2004) experimental result yielded a Froude number of about 0.45 (see their
figure 14 for D/H = 1). Similar results were reported by Rottman & Simpson (1983)
and Marino et al. (2005) for the constant-velocity phase of finite volume releases (see
table 2). Shin et al. (2004) conjectured that the deviation was primarily due to drag at
the bottom wall. The effect of bottom friction was investigated by Härtel et al. (2000b).

4.2.3. Inertial and viscous phases

From figure 8(a), it can be observed that the small-release planar currents for the
lower two Re depart from the constant-velocity phase at t̃ ≈ 12, after they have trav-
elled about 4 lock lengths (xF ≈ 5) for Re =895 and about 5 lock lengths (xF ≈ 6) for
Re = 3450. After the transition, the front velocity follows a decaying law with a slope
in good agreement to the viscous phase predictions presented in the theory section.
For the case of the small-release planar current with Re = 8950, the front velocity
departs from the constant-velocity phase at t̃ ≈ 12 after the current has travelled
about 5 lock lengths (xF ≈ 6). The front velocity follows the inertial phase scaling by
Huppert & Simpson (1980) with good agreement until t̃ ≈ 17.3 (xF ≈ 8), and after this
time, it departs from the inertial phase scaling and falls off more rapidly following the
viscous phase scaling laws. It can also be observed from this figure that the quantitative
prediction of the viscous phase scaling laws is poor. Figure 8(a) includes the viscous
phase predictions for Re = 8950 and it can be observed that both predictions by Hoult
(1972) and Huppert (1982) underestimate the corresponding numerical result.

For the cylindrical current, the situation is similar. From figure 8(b), it can
be observed that the current for the lower Re = 895 leaves the nearly constant
velocity phase at t̃ ≈ 5 after it has travelled about 1.6 lock radii (rF ≈ 2.6). After this
time, the front velocity falls off rapidly with a slope in agreement with the viscous
phase theoretical predictions. For the cases of the larger two Re, the front velocity
leaves the nearly constant velocity phase at t̃ ≈ 4.5 (rF ≈ 2.7) and follows the inertial
phase prediction by Huppert & Simpson (1980) with good agreement up to t̃ ≈ 17
(rF ≈ 5.7). At this time, the front velocity leaves the inertial phase and enters a phase
of faster decaying. The viscous scaling laws by Hoult (1972) and Huppert (1982) for
Re = 8950 are included in figure 8(b). Again, the viscous scaling laws underpredict
the simulation results.

4.3. Transition between phases of spreading

The transition point between the different phases of spreading can be computed by
matching front velocity from the corresponding scaling laws at the time of transition.
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Reference Reh0
h̃0 x̃0

Amy et al. (2005) Exp. A0-1 2220 1 1
Bonnecaze et al. (1993) 71 500 1 0.5
Marino et al. (2005) Exp. 1 2790 1 1
Marino et al. (2005) Exp. 2 6360 1 1
Marino et al. (2005) Exp. 3 8620 1 1
Marino et al. (2005) Exp. 4 15 500 1 1
Huppert & Simpson (1980) Exp. 1 15 700 1 2.62
Huppert & Simpson (1980) Exp. 2 28 000 1 2.66
Huppert & Simpson (1980) Exp. 7 16 200 0.34 0.89
Huppert & Simpson (1980) Exp. 9 42 500 0.33 0.87

Table 3. Experimental data used to revisit the scaling laws during the phases of spreading.

Data for planar currents with finite volume release. Here, Reh0
=

√
g′h3

0/ν
2.

Reference Reh0
h̃0 r̃0

Bonnecaze et al. (1995) 34 000 1 1.89
Hallworth et al. (2001) Exp. S1 59 000 0.82 2
Hallworth et al. (2001) Exp. S2 152 000 0.965 1.25
Hallworth et al. (2001) Exp. S3 136 000 0.574 1.25
Hallworth et al. (2001) Exp. S7 201 000 0.565 1.25
Huppert & Simpson (1980) Exp. 1 18 400 1 4.67
Huppert & Simpson (1980) Exp. 3 26 000 1 3.24
Huppert & Simpson (1980) Exp. 4 19 000 1 3.24
Huppert & Simpson (1980) Exp. 5 26 000 1 1.47
Martin & Moyce (1952 b) 4300 0.27 0.14

Table 4. Experimental data used to revisit the scaling laws during the phases of spreading.

Data for cylindrical currents. Here, Reh0
=

√
g′h3

0/ν
2.

Before matching, the first step is to obtain the prefactors for the different scaling
laws to be applied in the slumping, inertial and viscous phases. A large collection of
experimental data, covering a range of width and depth of release (x0 or r0 and h0)
and Re, will be used. The experimental data used to this end are given in tables 3
and 4 for planar and cylindrical currents, respectively.

Figure 9 presents the front velocity as a function of time for the experimental data in
tables 3 and 4 with open symbols. The geometric and Re effects have been scaled out
appropriately in the different phases and the normalized front velocities are plotted in
figure 9. Figures 9(a) and 9(e) present the velocity data scaled for the slumping phase
for planar and cylindrical settings, respectively, figures 9(b) and 9(f ) correspond to
the inertial phase for planar and cylindrical settings, respectively, figures 9(c) and 9(g)
correspond to the viscous phase based on the theory of Hoult (1972) for planar and
cylindrical settings, respectively, and figures 9(d) and 9(h) correspond to the viscous
phase based on the theory of Huppert (1982) for planar and cylindrical settings,
respectively. Included in these figures also are the best fit to the data, where the
theoretical power-law exponents are preserved and only the prefactor is optimized. In

the slumping phase, from the best fit we obtain Fp,sl = 0.45 h
1/2

0 and Fc,sl = 0.42 h
1/2

0 for
planar and cylindrical currents, respectively. Here, Fp,sl and Fc,sl denote the constant
numerical value of uF during the slumping phase for planar and cylindrical currents,
respectively. In the inertial phase, the best fits yield ξp = 1.47 and ξc = 1.23 for planar
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and cylindrical currents, respectively (see (3.4) and (3.5)). In the viscous phase, the
best fits yield ξpHt = 1.87 and ξcHt = 2.6 for the theory of Hoult (1972) (see (3.6) and
(3.7)), and ξpHp =3.2 and ξcHp = 4.64 for the theory of Huppert (1982) (see (3.8) and
(3.9)). In figure 9, the data from our simulations are also included with solid symbols.
Three things can be observed in these figures: (i) the agreement between numerical
and experimental results is good; (ii) as Re increases, the numerical results approach
the best fit; and (iii) the larger Re simulations seem to capture appropriately every
phase of spreading for both geometrical configurations.

4.3.1. Transition times for planar currents

Matching the constant front velocity of the slumping phase, Fp,sl , with the front
velocity of the inertial phase given in (3.4), the transition time from slumping to
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Figure 9. Front velocity during the slumping, inertial and viscous phases of spreading for
planar and cylindrical currents. The plots include experimental data (open symbols) from
tables 3 and 4, and the three-dimensional simulation results (solid symbols). The front velocity
has been scaled according to the different scaling laws in order to remove the influence of
initial condition and Re on uF . (a) Slumping phase for planar currents with small release;
(b) inertial phase for planar currents with small release; (c) viscous phase for planar currents
with small release for scaling law by Hoult (1972); (d) viscous phase for planar currents with
small release for scaling law by Huppert (1982); (e) slumping phase for cylindrical currents;
(f ) inertial phase for cylindrical currents; (g) viscous phase for cylindrical currents for scaling
law by Hoult (1972); (h) viscous phase for cylindrical currents for scaling law by Huppert
(1982). Each plot also presents the best fit to the experimental data.

inertial phase, t̃SI , of a planar current can be obtained as

t̃SI =
(
ξp

)3 x0 h0

F 3
p,sl

. (4.5)
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Rescaling the transition time, we obtain

tSI

√
g′ h0

x0

=
t̃SI h

1/2

0

x0

=
(

2
3
ξp

)3

(
Fp,sl

h
1/2

0

)−3

, (4.6)

and using the best-fit results presented above, we obtain t̃SI h
1/2

0 / x0 = 10.33. This
predicted transition time is demarcated in figure 9(a) and captures well the time of
departure from the constant-velocity phase for the experimental data.

The computational data present some Reynolds-number dependence, as can be

confirmed in figure 8(a). The values of Fp,sl/ h
1/2

0 for the present simulations at
Re = 895, 3450 and 8950 are 0.361, 0.407 and 0.421, respectively (table 2). Based
on these values, the slumping to inertial phase transition times can be estimated
from (4.5) as t̃SI = 20.0, 14.0 and 12.6, for the three different Re cases. The slumping
to inertial phase transition time identified in figure 8(a) for the higher Re = 8950
simulation is in good agreement with the prediction. With further increase in Re, the
transition time can be expected to approach the asymptotic value of about 10.33.
At the lower two Reynolds numbers, departure from the constant-velocity slumping
phase occurs earlier and, as we will discuss below, this is due to direct transition from
the slumping to the viscous phase.

The location at which transition between the slumping and inertial phases occurs
can now be estimated as xSI /x0 ≈ uF tSI /x0 = (2 ξp /3)3(Fp,sl/ h

1/2

0 )−2. Again, using the
best-fit values, we can obtain the following estimate: xSI /x0 = 4.65, which is lower than
the accepted predicted value of xSI /x0 between 6 and 10 (Rottman & Simpson 1983;
Metha et al. 2002; Marino et al. 2005). Note that the actual current velocity over
a substantial portion of the acceleration phase is higher than the constant slumping
phase velocity. This difference can partly explain the underestimation of transition
location by the best-fit slumping phase velocity.

We now examine the possibility of direct transition from the slumping to the viscous
phase by matching the constant velocity of the front in the slumping phase, Fp,sl ,
with the front velocity of the viscous phase given in (3.6) or (3.8). Depending on the
viscous phase scaling employed, two different estimates for this transition time, t̃SV ,
can be obtained as

t̃SV Ht =
(

3
8
ξpHt

)8/5

(
x0 h0

)4/5

F
8/5
p,sl

Re1/5 , (4.7)

t̃SV Hp =
(

1
5
ξpHp

)5/4

(
x0 h0

)3/4

F
5/4
p,sl

Re1/4 . (4.8)

For the present full-depth small-release planar currents (h0 = x0 = 1), using the best
estimates for ξpHt and ξpHp and the values of Fp,sl from table 2, we obtain t̃SV Ht =11.3,
12.2 and 14.0, and t̃SV Hp = 11.2, 12.5 and 16.4, at Re =895, 3450 and 8950, respectively.

At Re = 895, the predicted values for t̃SV by both theories are lower than the
prediction for t̃SI , which indicates that, in this case, the flow transitions directly
from the slumping to the viscous phase without entering the inertial phase. From
figure 8(a), it can be estimated that the current leaves the constant-velocity phase at
t̃ ≈ 12, which is in good agreement with the predicted values of t̃SV . The situation is
similar for the intermediate Re = 3450 case, for which the predicted values of t̃SV are
lower than t̃SI , and as a result, this current can also be expected to transition directly
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from the slumping to the viscous phase. The proximity of predicted t̃SI and t̃SV for
this case suggests that this current is in the critical range of Re for an inertial phase
to develop. For the case of Re = 8950, t̃SV is predicted to be larger than t̃SI , which
indicates that the flow is entering the inertial phase. From figure 8(a), the transition
time from slumping to inertial phase for this Re can be estimated to occur at t̃ ≈ 12,
which is in good agreement with the predicted t̃SI = 12.6.

The transition time from the inertial to the viscous phase can be estimated by
matching the front velocity from (3.4) with (3.6) or (3.8) as

t̃IV Ht =

(
3 ξpHt/8

2 ξp/3

)24/7

(x0 h0)
4/7Re3/7 , (4.9)

t̃IV Hp =

(
ξpHp/5

2 ξp/3

)15/7

(x0 h0)
4/7Re3/7. (4.10)

Using the best estimates of ξp , ξpHt and ξpHp , the prefactors in (4.9) and (4.10) can
be obtained as 0.32 and 0.4, respectively. Except for this difference in prefactor, both
the theories predict the same power-law behaviour. The predicted transition times
for the Re = 8950 case are t̃IV Ht = 15.7 and t̃IV Hp = 19.8. From figure 8(a) it can be
observed that the current leaves the inertial phase scaling at t̃ ≈ 17.3 (xF ≈ 8.1) which
is in good agreement with these predictions.

The slumping to inertial phase transition time, t̃SI in (4.5), has a weak Reynolds-
number dependence through Fp,sl and becomes Reynolds-number independent only
at large Re. In contrast, t̃SV will continue to increase with Re. Thus, at lower Re, a
direct transition from slumping to viscous phase occurs. However, at sufficiently large
Re, t̃SV will become larger than t̃SI and a slumping to inertial phase transition will
occur before eventual transition to the viscous phase, which is what we observe at
Re =8950. Matching (4.5) with (4.7) or (4.8) it can be estimated that the critical Re

for the inertial phase to exist is

RecrHt =

(
2 ξp/3

Fp,sl

)15 (
Fp,sl

3 ξpHt/8

)8

x0h0 for Hoult (1972), (4.11)

RecrHp =

(
2ξp/3

Fp,sl

)12 (
Fp,sl

ξpHp/5

)5

x0h0 for Huppert (1982). (4.12)

Assuming the best fit values, we obtain RecrHt =3400 x0 h0 and RecrHp =2000 x0 h0.
For Re >Recr there will be an inertial phase, whereas for lower Re, the current will
transition directly from slumping to viscous phase without an inertial phase. The
present numerical results are in reasonable agreement with this prediction of Recr .

4.3.2. Transition times for cylindrical currents

The transition times between the different phases in a cylindrical current can be
estimated in an analogous way. The transition time from slumping to inertial phase
can be predicted by matching the constant velocity during the slumping phase, Fc,sl ,
with the inertial phase velocity scaling given in (3.5) as

t̃SI =

(
π1/4

2
ξc

)2
r0 h

1/2

0

F 2
c,sl

. (4.13)
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Rescaling the transition time we obtain

tSI

√
g′ h0

r0
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t̃SI h
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r0
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(
π1/4
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ξc
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Fc,sl
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1/2

0

)−2
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and using the best-fit results presented above, we obtain t̃SI h
1/2

0 / r0 = 3.8. This
predicted transition time is demarcated in figure 9(e) and it is in good agreement with
the experimental data.

As with the planar case, Reynolds-number independence can be expected only at
large Re. As can be seen in table 2 the values of Fp,sl/ h

1/2

0 for the present simulations
at Re = 895, 3450 and 8950 are 0.318, 0.368 and 0.408, respectively, giving slumping
to inertial phase transition times from (4.13) as t̃SI = 6.6, 4.9 and 4.0, respectively. The
slumping to inertial phase transition times identified in figure 8(b) for the higher two
Re cases are in good agreement with the above prediction. At the lower Re, departure
from the constant velocity slumping phase occurs earlier owing to direct transition
from slumping to viscous phase.

The location at which transition between the slumping and inertial phases occurs
can now be estimated as rSI /r0 ≈ uF tSI /r0 = (π1/4 ξc/2)2(Fc,sl/ h

1/2

0 )−1. Again, using
the best fit values, we can obtain the estimate rSI /r0 = 1.6, which is lower than the
corresponding experimental observation of rSI /r0 ≈ 3.0 for h0/H = 1 (Hallworth et al.
1996).

Slumping to viscous phase transition for the cylindrical current can be investigated
by matching the constant front velocity of the slumping phase with the velocity
scaling in the viscous phase given in (3.7) or (3.9). The resulting expressions for the
transition time are

t̃SV Ht =
(

1
4
ξcHt

)4/3

(
r2

0 h0

)4/9

F
4/3
c,sl

Re1/9 , (4.15)

t̃SV Hp =
(

1
8
ξcHp

)8/7

(
r2

0 h0

)3/7

F
8/7
c,sl

Re1/7 . (4.16)

For the present full-depth currents (h0 = r0 = 1), using the best estimates of ξcHt and
ξcHp , and corresponding values of Fc,sl from table 2, the transition times predicted by
(4.15) and (4.16) are t̃SV Ht = 5.5, 5.3 and 5.2, and t̃SV Hp = 5.2, 5.4 and 5.5, at Re = 895,
3450 and 8950, respectively.

For the case of Re =895, the estimated value of t̃SI is larger than the predictions
for t̃SV by both theories, which indicates that this current transitions directly from
the slumping phase to the viscous phase. It can be observed from figure 8(b) that the
current departs the constant velocity phase for t̃ ≈ 5, which is in good agreement with
the predictions above for t̃SV . For the cases of Re = 3450 and Re = 8950, the predicted
values of t̃SV are larger than the predicted values for t̃SI , which suggests the presence
of an inertial phase at these Re.

The transition time from inertial to viscous phase, t̃IV , can be predicted by matching
the front velocity from (3.5) with (3.7) or (3.9) as

t̃IV Ht =

(
ξcHt/4

π1/4 ξc/2

)4 (
r2

0 h0

)1/3
Re1/3 , (4.17)

t̃IV Hp =

(
ξcHp/8

π1/4 ξc/2

)8/3 (
r2

0 h0

)1/3
Re1/3 . (4.18)
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For the cylindrical currents, both theories also predict the same Re dependence. The
predicted transition times using the best-fit values are t̃IV = 6 and 8.3 for both theories
at Re =3450 and Re =8950, respectively. From figure 8(b), it can be estimated that
the currents leave the inertial-phase scaling at t̃ ≈ 17 for both Re. This time is larger
than the theoretical prediction by a factor of 2. It must be cautioned that the above
estimates are based on an average constant velocity during the slumping phase.
However, the actual front velocity slowly varies during the slumping phase.

Matching (4.13) with (4.15) or (4.16), the critical Re for the inertial phase to exist
can be estimated as

RecrHt =

(
π1/4 ξc/2

Fc,sl

)18 (
Fc,sl

ξcHt/4

)12

r0h
1/2

0 for Hoult (1972), (4.19)

RecrHp =

(
π1/4 ξc/2

Fc,sl

)14 (
Fc,sl

ξcHp/8

)8

r0h
1/2

0 for Huppert (1982). (4.20)

With the best estimates of the constants, we obtain RecrHt = 880 r0 h
1/2

0 and RecrHp =

870 r0 h
1/2

0 . For Re >Recr , there will be an inertial phase, whereas for lower Re, the
current will transition directly from the slumping to the viscous phase without an
inertial phase. This prediction of Recr is also in good agreement with our numerical
results since we observe the Re = 895 case to transition directly to the viscous phase,
whereas the simulations for Re = 3450 and Re = 8950 present an inertial phase.

It must be emphasized that the above estimates of transition times are sensitive to
the exact value of the prefactors used with the different scaling laws. For instance, if
we were to use the original prefactors presented in § 3.2 for ξp , ξc, etc., the resulting
estimate for the critical Reynolds number for the existence of the inertial phase
is much larger and differs significantly from the experimental and computational
observation.

4.4. Three-dimensionality of the flow

At the lowest Re considered (Re = 895), the planar current remains two-dimensional
and the cylindrical current remains axisymmetric at all times. The three-dimensional
disturbances introduced in the initial condition do not grow over time at this Re.
At the higher two Re, however, instabilities grow over time and the flow eventually
becomes three-dimensional, forming a well-defined pattern of lobes and clefts and a
turbulent front and body. Differences between two-dimensional and three-dimensional
simulations were reported by Cantero (2002) for saline currents and by Necker et al.
(2002) in the context of planar particulate gravity currents. Here, we identify and
explain the mechanisms behind the spurious time variation of the front velocity during
the viscous phase in two-dimensional simulations.

During the acceleration phase, the three-dimensional disturbances have not grown
to sufficient strength to change the evolution of the current. Therefore, the three-
dimensional and two-dimensional simulations yield nearly identical results during
the acceleration phase in all the cases considered. As seen in figure 7, near the
end of the acceleration phase the interface is marked by the complete development
of two-dimensional Kelvin–Helmholtz rolls (or toroidal rolls in case of cylindrical
currents). During the slumping phase, these rolls rapidly undergo three-dimensional
instability and a fully developed three-dimensional state quickly follows. The three-
dimensionality of the current, however, does not have a strong influence on the speed
of the current during the slumping phase. Some small variations can be seen in
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the inset in figure 5 between the two-dimensional and three-dimensional simulation
results, but the overall evolution of the current remains unaffected.

The three-dimensionality of the current becomes important during the inertial and
viscous phases. Substantial differences can be observed between the two-dimensional
and three-dimensional results at later times in the insets in figures 5(b) and 5(c).
Importantly, the three-dimensional current moves faster than the two-dimensional
approximation and this difference is observed both in the planar and cylindrical
currents. This implies that the speed of actual currents, which are invariably three-
dimensional, will be underestimated by two-dimensional models. The other significant
observation is that, while the speed of the three-dimensional currents smoothly
decrease with time, the two-dimensional currents present periods of strong acceleration
and deceleration. This non-monotonic behaviour of the two-dimensional current is
related to the presence of strong coherent vortices and their episodic interaction in
the form of vortex pairing.

4.4.1. Lobes, clefts and spanwise variation

The front of the current does not advance forward as one fixed entity. The
propagation of the front presents some variation along the span (or along the
circumferential direction) owing to the formation of lobes and clefts (Simpson 1972).
Figure 10(a) shows, for example, the flow at the front of the three-dimensional small-
release planar current for Re = 8950 at t̃ = 21.2. In this figure, the location of the
front is visualized by a thick solid line contour of ρ̃ = 0.01, the horizontal flow is
visualized by vectors and the vertical flow is visualized by thin line contours (solid line
contours correspond to positive vertical velocity and dashed line contours to negative
vertical velocity). The horizontal flow tends to diverge from the centre of the lobes
and to concentrate in the clefts. Also the near-bed flow moves upward in the clefts
and downward in the lobes.

The three-dimensional lobe and cleft structure of the advancing front can be seen
in figure 11, which shows the flow structure of the three-dimensional small-release
planar current for Re = 8950 at t̃ = 21.2. At this time, the current is in the viscous
phase of spreading. In figure 11(a), the flow is visualized by a surface of constant
density (ρ̃ = 0.05), and figure 11(b) shows contours of span-averaged ρ̃. The spanwise
variation in front propagation continues after the initial formation of lobes and clefts
and, as a result, the number and location of lobes and clefts constantly rearrange along
the front. For example, figure 10(b) shows a composite picture of the front plotted
on the (x̃, ỹ)-plane (top view) with several equispaced time intervals superposed for
the three-dimensional small-release planar current for Re = 8950. At the beginning
(toward the left-hand end of the plot), the front is nearly flat, but small random
disturbances introduced in the initial condition quickly develop into well-formed lobe
and cleft structures. This figure illustrates the footprint of clefts on the horizontal
(x̃, ỹ)-plane as they advance over time. A complex pattern is etched by the clefts as
the front advances, with repeated merger of the clefts and splitting of the lobes. The
locations of transition from acceleration to slumping, from slumping to inertial and
from inertial to viscous phases are marked in the figure by dotted lines. The lobe and
cleft dynamics for the other cases simulated is similar and not shown here.

The lobe and cleft structure of the front has been observed and well documented in
several laboratory experiments (see for example Simpson 1972, 1997; Spicer & Havens
1987; Garcı́a & Parker 1989). With increasing time, the instantaneous Reynolds of the
flow, ReF = uF hH/ν = Re uF hH , decreases and this decrease in ReF has the dominant
influence on the increase in the length scale of the lobe and cleft pattern. Figure 10(c)
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Figure 10. (a) Near-bed flow pattern at the front of the small-release gravity current for
Re = 8950 for t̃ =21.2 when the front is located at x̃ ≈ 9.5. Vectors show the horizontal
flow at z̃ = 0.03. Thin line contours show vertical flow velocity at the same height, solid
line for positive vertical velocity and dashed line for negative vertical velocity. The thick
solid line indicates the front location visualized by a bottom density contour of ρ̃ = 0.01.
(b) Time evolution of lobe and cleft pattern in the three-dimensional small-release planar
current for Re = 8950 visualized by contours of constant density (ρ̃ =0.01). The time
separation between contours is �t̃ = 0.014. Dotted lines mark the transition locations between
acceleration/slumping, slumping/inertial and inertial/viscous phases. (c) Lobe size as a

function of local Reynolds number ReF =Re uF hH . The figure includes our results from
the three-dimensional small-release planar current for Re = 3450 (solid diamonds), Re =8950
(solid circles), and from experimental data by Simpson (1972) (open squares). The line is the
empirical prediction by Simpson (1972): λ̃/h̄H = 7.4 Re−0.39

F .
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Figure 11. Flow structure of the three-dimensional small-release planar current for Re = 8950
at t̃ = 21.2. (a) Isosurface of ρ̃ = 0.05, and (b) contours of span-averaged ρ̃. At this time, the
current is in the viscous phase of spreading and shows a complex state of three-dimensionality.

shows the normalized lobe size, λ̃/hH , as a function of ReF for the three-dimensional
small-release planar currents at Re = 3450 and Re =8950. Also in the figure are the
experimental data of Simpson (1972) and his empirical prediction λ̃/h̄H = 7.4 Re−0.39

F .
The numerical results present very good agreement with the experimental data. This
Re effect on the wavelength of the lobe and cleft pattern is in agreement with
the results on the most unstable mode from the linear stability analysis of Härtel,
Carlsson & Thunblom (2000a).

The non-uniform structure of the front is better illustrated in figure 12, where the
front location x̃F is plotted as a function of the spanwise coordinate (ỹ for planar
currents and θ for cylindrical currents). Only the three-dimensional highest Re = 8950
simulations are considered. Figure 12(a) shows the front location of the large-release
planar current at t̃ ≈ 7.6, after the front has travelled approximately 3 dimensionless
units from the lock (xF = 11.5). For the small-release planar current, figure 12(b)
shows the front location at two different time instances, one at the earlier slumping
phase (̃t ≈ 7) when the front is located approximately at x̃ ≈ 4, and another one at
a later time in the viscous phase (̃t ≈ 23) after the front has travelled to x̃ ≈ 10.
Figure 12(c) shows the front location for the cylindrical current during the slumping
phase (̃t ≈ 3) and during the viscous phase (̃t ≈ 18) for only one quadrant of the
complete computational domain.

The variation in the front location can also be measured in terms of the root mean
square (r.m.s.) deviation in front location from the mean and is shown in table 5
for the two larger Re in the slumping and viscous phases for the different cases
considered in figure 12. A comparison of the two different time instances shown in
figure 12(b) shows that the r.m.s. fluctuation is larger in the viscous phase than in the
slumping phase, both in the planar and cylindrical currents. Thus, not only does the
size of lobes increase with time as indicated by figure 10(c), but also, with increasing
time or diminishing local ReF , these lobes become more prominent as indicated by
these r.m.s. values. A comparison of the cylindrical and planar results shows that the
cylindrical configuration presents a larger variation of front location.
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Figure 12. Spanwise (circumferential) variation of the front location for Re = 8950. (a) Front
location for the three-dimensional large-release planar configuration at t̃ ≈ 7.6 (xF ≈ 11.5).
(b) Front location for the three-dimensional small-release planar current at two different time
instances, one at the earlier slumping phase, t̃ ≈ 7, (open symbol) when the front is located
approximately at x̃ ≈ 4, and another one at a later time in the viscous phase, t̃ ≈ 23, (solid
symbols) after the front has travelled to x̃ ≈ 10. (c) Front location for the three-dimensional
cylindrical current during the slumping phase, t̃ ≈ 3 (open symbol) and during the viscous
phase t̃ ≈ 18 (solid symbol).

4.4.2. Three-dimensionality of the current body

The body of the current is much more complex and three-dimensional than is shown
in figure 11. The undulations seen in the span-averaged contours (figure 11b) provide
a clear indication of Kelvin–Helmholtz instability and the presence of a periodic train
of rolled-up vortices. The imprint of these rolls can be seen in the three-dimensional
density contour (figure 11a), where they appear to be bent, stretched, and eventually
broken up into smaller-scale structures. These small structures can be observed in the
body of the current behind the leading front, giving the appearance of a turbulent
wake that eventually dissipates toward the tail of the current. Similar observations
were made in cylindrical currents (Cantero et al. 2006) and will not be presented
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Re Planar large Planar small Cylindrical

Slumping 3450 4.1 × 10−2 (8.2) 4.6 × 10−2 (7.5) 0.9 × 10−2 (3.1)
phase 8950 3.5 × 10−2 (7.6) 4.55 × 10−2 (7.1) 1.95 × 10−2 (3.0)

Viscous 3450 – 0.9 × 10−1 (24.7) 0.65 × 10−1 (19.7)
phase 8950 – 4.8 × 10−2 (22.8) 1.4 × 10−1 (17.7)

Table 5. Front location r.m.s. for selected times in slumping and viscous phases. The results
are reported with the time from release between brackets: r.m.s. (̃t), to correlate these results
with insets in figures 5(a), 5(b) and 5(c).

here in detail. The turbulent three-dimensional structure of the body of the current
has been observed and well documented in numerous experiments (see for example
Simpson & Britter 1979; Garcı́a & Parker 1989; Alahyari & Longmire 1996; Garcı́a &
Parsons 1996; Simpson 1997; Parsons & Garcı́a 1998; Thomas, Dalziel & Marino
2003).

The complex three-dimensional vortical structure of the wake is not entirely
apparent in the density isosurface presented in figure 11(a). The corresponding
isosurface of swirling strength, λ̃ci , defined as the absolute value of the imaginary
portion of the complex eigenvalues of the local velocity gradient tensor, is shown
in figure 13. (The local velocity gradient tensor has three eigenvalues. If all three
eigenvalues are real, then swirling strength is zero. If only one eigenvalue is real, then
the other two are complex conjugates and there is local swirling motion.) As discussed
in Zhou et al. (1999) and Chakraborty, Balachandar & Adrian (2005), the swirling
strength provides a clean measure of the compact vortical structures of the flow as
it picks out regions of intense vorticity, but discriminates against planar shear layers,
where vorticity is balanced by strain rate. Thus, as can be seen from figure 13, the
three-dimensional vortical structure of the high Re planar current is extracted well by
λ̃ci . At the time instance shown, the mean and r.m.s. values of dimensionless λ̃ci are
0.16 and 0.57, respectively. In figure 13(a), the isosurface of λ̃ci = 2.12 is plotted and
thus it captures intense vortical regions. The flow is dominated by inclined vortical
structures and several hairpin vortices can be observed (indicated by arrows). These
structures are similar to those observed in a turbulent wall layer, where the vortical
structures are tilted from the wall in the flow direction. The gravity current shown in
figure 13(a) flows to the right. In a frame of reference moving with the front, the flow
within the current can be from right to left which explain the observed orientation
of the vortical structures within the current. The net effect of the vortical structures
on the concentration (density) field is seen in figure 11. The isosurface of swirling
strength confirms what was observed earlier in the density isosurface, that is, the body
of the current is far more three-dimensional than the head.

Also plotted in figures 13(b) and 13(c) are the contours of span-averaged
swirling strength for the three-dimensional planar simulation and the swirling
strength for the two-dimensional planar simulation at Re = 8950, respectively.
The substantial difference between the three-dimensional evolution and the two-
dimensional approximation is highlighted in this figure. At the instance shown,
the signature of a sequence of Kelvin–Helmholtz vortices can be seen in the two-
dimensional swirling strength at x̃ ≈ 5.9, 6.6, 7.7, 8.2 and 8.6. The span-averaged
vortex signature in the three-dimensional simulation is not as well defined as in
the two-dimensional simulation. The two-dimensional result shows several coherent
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Figure 13. Contours of λ̃ci for the small-release planar current for Re =8950 at t̃ = 21.2.
(a) Isosurface of λ̃ci =2.12 from the three-dimensional simulation; (b) contours of span-
averaged λ̃ci from the three-dimensional simulation; (c) contours of λ̃ci from the two-
dimensional simulation. In (a) several hairpin vortices are pointed with arrows to help their
visualization. The dashed line in (b) and (c) represents the interface visualized by the contour
of span-averaged density ρ̃ = 0.05. In (b) and (c), the inset numbers indicate local values of
span-averaged and two-dimensional λ̃ci , respectively.

primary (counterclockwise rotating) vortices along the length of the current. Also
present are secondary (clockwise rotating) vortices induced by the interaction of the
primary vortices with the no-slip wall. In figure 13(c), the vortices are undergoing
a complex interaction process of pairing and merging. Another striking difference
between the three-dimensional and two-dimensional simulations is the strength of
the rolled-up vortices, which are indicated in figure 13 by the inset numbers. In the
two-dimensional approximation, the vortices just formed upstream of the head are
two to three times stronger than their three-dimensional counterpart. Furthermore,
as the vortices move upstream of the head, they lose their strength more rapidly in
the three-dimensional simulation, whereas in the two-dimensional approximation, the
coherence of the vortices is preserved and, therefore, their decay is not as strong. Also
overlaid on figures 13(b) and 13(c) as a dashed line is the current interface plotted
in terms of the span-averaged density contour of ρ̃ =0.05. The two-dimensional
approximation shows large variation in the current height, which is clearly associated



32 M. I. Cantero, J. R. Lee, S. Balachandar and M. H. Garcia

2.13.72.91.71.71.7

2.82.5 3.9 3.3 1.8 1.6

x̃

z̃

–5 –4 –3 –2 –1 0
0

0.5

1.0(c)
3.45.14.15.4

1.73.43.1 4.2 4.4 1.8 3.5
1 2 3 4 5

x̃

z̃

–5 –4 –3 –2 –1 0
0

0.5

1.0(b)

1 2 3 4 5

(a)

0
1

2
3

4
5

10

1.0
0.5

0.5

0
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Figure 14. Contours of λ̃ci from the large-release planar current for Re = 8950 at t̃ = 12.
(a) Isosurface of λ̃ci = 2.12 (shown only for x̃ > 0) from the three-dimensional simulation;
(b) contours of span-averaged λ̃ci from the three-dimensional simulation; (c) contours of λ̃ci

from the two-dimensional simulation. The dashed line in (b) and (c) represents the interface
visualized by the contour of span-averaged density ρ̃ = 0.5. In (b) and (c), the inset numbers
indicate local values of span-averaged and two-dimensional λ̃ci , respectively.

with the presence of strong coherent vortices. The height variations are present even
in the three-dimensional simulation (see also figures 3 and 4), but the undulations are
much weaker.

4.4.3. Three-dimensionality of the flow during the slumping phase

We now address three-dimensionality of the current in the constant-velocity
slumping phase. Figure 14(a) shows the isosurface of λ̃ci = 2.12 for the Re = 8950
large-release planar current at t̃ = 12. At this instance, the mean and r.m.s. values of
λ̃ci are 0.28 and 0.74, respectively. Also shown in figures 14(b) and 14(c) are contours
of λ̃ci from the span-averaged result of the three-dimensional and two-dimensional
simulations, respectively. In the isosurface visualization, only the advancing front of
the heavy fluid (x̃ � 0) is shown. The vortical structure of the current is qualitatively
very similar to that seen in figure 13 for the small-release planar case in the viscous
phase. An important difference is that the rolled-up vortices are farther upstream of
the front. At the instance shown, the vortices are generally at least 1 dimensionless
unit upstream of the front, whereas in the viscous phase shown in figure 13, the
vortices are much closer to the front. For instance, the dominant vortex at x̃ ≈ 1
is about 4 dimensionless units upstream of the front, whereas in figure 13, the
dominant vortex is only 1 dimensionless unit upstream of the front. Differences
between three-dimensional and two-dimensional results are still present in terms of
stronger Kelvin–Helmholtz vortices. However, these vortex cores are farther upstream
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of the front so they do not interact with it. Consequently, their influence on front
velocity is not strong and the two-dimensional and three-dimensional fronts advance
at about the same mean velocity.

As indicated in the insets in figure 5, only the average speeds of the two-dimensional
and three-dimensional currents are the same in the slumping phase. Instantaneous
location and velocity of the current fluctuates as the interface rolls up to form new
vortices and as the older vortices interact. As can be seen at the instance shown
in figure 14, the two-dimensional current has advanced slightly ahead of the three-
dimensional current. A comparison of figure 14 in the slumping phase with figure
13 in the viscous phase shows, that in the slumping regime, the strong rolled-up
vortices are located farther upstream of the front, whereas in the inertial and viscous
phases they are closer to the front of the current. This, we believe, is the reason why
three-dimensionality has a stronger influence on the propagation speed of the current
in the viscous phase.

4.4.4. Time variation

It can be observed in the insets in figure 5 that the two-dimensional simulations
present strong time variation in the mean front velocity during the viscous phase.
This time variation is related to strong vortex interaction, which is absent in the three-
dimensional simulations. In the two-dimensional approximation, the spanwise vortices
remain coherent and exhibit strong interaction in terms of pairing and leap-frogging.
Lack of three-dimensionality prevents vortex stretching and breakup, and therefore
the rolled-up vortices maintain their strength and remain in the flow for a longer
time, allowing them to interact strongly with each other. Figure 15 shows the mean
front velocity in the two-dimensional small-release planar current for Re = 8950. A
sequence of vortex pairing is shown as insets (a) to (e), each separated with a time
interval of 0.71 time units. These times are also marked in the plot of front velocity
to allow connection between the dynamics of vortex pairing in relation to the mean
front velocity variation. In the insets, the front of the current is visualized by density
contours. Solid lines represent ρ̃ < 0.3 and dashed lines represent ρ̃ � 0.3. Five vortical
structures marked 1 to 5 can be identified in figure 15, inset (a). Vortices 1, 2, 4 and
5 rotate counter-clockwise, and vortex 3 rotates clockwise. The vortex pairing begins
with the interaction of vortices 3 and 4, which elongates vortex 4 (see figure 15,
inset (b)) giving space for the growth of vortex 3. Following the growth of vortex 3,
the interaction of vortices 2 and 3 begins and, as a consequence, vortex 2 acts as a
pump of heavy fluid at the expense of its own kinetic energy. The centre of mass of
vortex 3 is raised and this results in an increase of its potential energy, which can
be visualized in figure 15, inset (c). At this time the acceleration of the front begins.
The acceleration of the front is driven by the enhanced potential energy of vortex
3, whose centre of mass moves down as the front advances (see figure 15, insets (d)
and (e)).

The above sequence is just an example. Similar vortex interaction processes are
responsible for other pronounced variations in the front velocity observed in figure 15.
The details of vortex interaction subtly vary, but the interaction process remains
qualitatively the same and is present in the cylindrical currents as well. Vortex
interaction occurs in three-dimensional simulations as well; however, because of their
reduced strength and coherence, the interactions are not nearly as powerful. Detailed
investigation of the flow shows strong vortex interactions in the two-dimensional
simulations, even in the constant velocity slumping phase. These interactions are
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Figure 15. Vortex interaction in the two-dimensional small-release planar current for
Re = 8950. The main figure shows the mean front velocity as a function of distance travelled
by the front. The insets show the head of the current visualized by density contours. Five
different time instances with time interval of 0.71 are shown, marked (a)–(e) in the main figure.
Solid lines represent contours of ρ̃ < 0.3 and dashed lines represent contours of ρ̃ � 0.3. Five
different individual vortex cores (billows) are shown in the different frames.

farther upstream of the front than in the viscous phase, and as a result the velocity
variation in the slumping phase is less pronounced.

5. Summary and conclusions
In this work, we present highly resolved two-dimensional and three-dimensional

simulations of gravity currents performed at Re = 895, 3450 and 8950. The
particular choice of Re = 3450 corresponds to a Grashof number Gr = 1.5 × 106,
the dimensionless parameter used by Härtel et al. (2000b) in their planar current
simulations. The other two Re correspond to Gr =105 and Gr = 107. We consider both
planar and cylindrical configurations, and in the planar currents we vary the volume
of the heavy fluid released into the lighter ambient fluid. The simulations have been
conducted with a de-aliased spectral code for the planar two-dimensional and three-
dimensional configurations, and for the cylindrical three-dimensional configuration.
A spectral multi-domain code has been used for the axisymmetric (two-dimensional
cylindrical) configuration. These highly accurate numerical formulations allow the
capture of all relevant length scales present in the flow.

The main objectives of the study are to examine the effect of the planar vs.
the cylindrical nature of the current, the influence of the volume of release on the
propagation of the front, the transition between phases, and the three-dimensionality
of the flow during the various phases of spreading. The planform area of a planar
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current increases linearly, whereas it does so quadratically for a cylindrical current,
resulting in fundamental differences in the spreading rate. In all the cases, as the
front accelerates from rest, the front velocity increases and reaches a maximum, after
which the front velocity decreases somewhat before settling to a near constant value.
The value of peak front velocity reached by the current increases with Re. Owing to
the quadratic spreading, the intensity of the cylindrical current weakens more rapidly
and, as a result, the peak velocity is lower than the planar counterpart for the same
initial Re. This maximum is reached after the front has advanced about 0.3 height
units regardless of the Re of the flow and the geometrical setting. This is, however,
for the ideal case of infinite gate lift velocity, and some deviation may be expected in
real experiments because of the finite time it takes to release the gate.

A close look at the interface between the heavy and light fluids shows that at about
the time the front velocity peaks, the interface begins to roll up, and at about the
time the roll up process saturates, the deceleration of the front ends and the constant
velocity phase begins. In the constant velocity slumping phase of the planar currents,
we observe the dimensionless height of the current to be lower than the theoretical
prediction of 1/2 (Benjamin 1968; Shin et al. 2004) for energy-conserving currents.
The corresponding constant dimensionless front velocity is also observed to be lower
than 1/2. Based on the limited range of Re investigated in the present study, a crude
estimation for the constant velocity for the planar currents at asymptotically large
Re is about 0.44. This asymptotic value is lower than the theoretical prediction by
both Benjamin (1968) and Shin et al. (2004), but is in reasonable agreement with
previously reported data presented in table 2 and with the best fit to the experimental
data presented in figure 9(a). Härtel et al. (1999) have considered the start-up stages
of gravity currents with slip surfaces, and their results show the presence of a slight
deceleration in the current speed past the peak value. Also, Härtel et al. (2000b)
report slip surfaces front velocities to be lower than the theoretical prediction of 0.5
even at large Re. These cases show that the reduction in the front velocity occurs
regardless of the existence of the bottom boundary layer. In the present simulations,
in addition to energy loss to wall friction, part of the potential energy goes towards
maintaining internal recirculation within the rolled-up vortices. Only the balance goes
towards the kinetic energy of the advancing front. This partitioning of energy has
not been accounted for in the existing theories. It can be conjectured that perhaps by
accounting for internal fluid motion it may be possible to predict better the actual
current height and velocity (see also Härtel et al. 2000b).

Over the entire computed time interval, the large-release planar currents for the
larger two Re are not substantially affected by viscous effects and remain in the
constant velocity slumping phase. The small-release planar and cylindrical currents
remain in the slumping phase only for a finite time interval, and transition to the
inertial or viscous phase. In the case of the planar currents, the nearly constant
velocity of spreading during the slumping phase is not affected by the size of release.

The Re of the present planar small-release simulations are not adequate for an
inertial phase to develop clearly. The transition is directly to the viscous phase for the
lower two Re simulations, whereas the larger Re simulation enters the inertial phase
for a brief period of time. In the case of the cylindrical currents, the larger two Re

simulations present an inertial phase of spreading, whereas the lower Re simulation
transitions from the slumping phase directly to the viscous phase. The transition times
between phases can be estimated by matching velocity at the same time using the
different scaling laws. We have revisited the prefactors in the slumping, inertial and
viscous phase scaling laws in the light of previously reported experimental data. With
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the revised scaling laws, we predict transition from the slumping to the inertial phase
to occur at t/T0 ≈ 10 for planar currents and at t/T0 ≈ 4 for cylindrical currents,
independently of the volume of release. Here, T0 = x0/

√
g′ h0 (or T0 = r0/

√
g′ h0).

These predictions are in very good agreement with the experimental data and our
experimental results.

For the present small-release planar configuration, it can be estimated that the Re

must be greater than about 3400 x0 h0 for the inertial phase to exist, and for the

cylindrical configuration, the Re must be greater than about 880 r0 h
1/2

0 .
The actual evolution of the front differs from simple theoretical prediction in several

significant ways. The Kelvin–Helmholtz vortices formed at the interface strongly
interact among themselves and with the bottom boundary in a complex chaotic
manner. In response to vortex pairing, leap-frogging and other such interaction
processes, the propagation of the front undergoes episodic rapid acceleration and
deceleration. The vortex interaction is stronger in the case of two-dimensional (or
axisymmetric) approximation, and as a result the undulations in front velocity are
pronounced. The spanwise (or circumferential) coherence of the Kelvin–Helmholtz
vortices is broken in three-dimensional simulations. In these cases, vortex interaction
is substantially weaker and result in much weaker undulations in front velocity.

At the lowest Re of 895, in all the cases considered, the three-dimensional
disturbance introduced in the initial condition decays and the current remains two-
dimensional (or axisymmetric) at all times. At the higher two Re, the current
becomes fully three-dimensional. The front of the current deforms into a lobe
and cleft structure, which undergoes constant rearrangement and leads to uneven
front propagation. Our numerical results agree well with experimental observations.
The body of the current is strongly three-dimensional and qualitatively resembles
a turbulent boundary layer populated with quasi-streamwise and inclined hairpin
vortices. These three-dimensional vortical structures have a strong influence on the
density field and the interface between the heavy and light fluids is highly distorted.

Three-dimensionality of the current has a strong influence on the propagation
speed in the inertial and viscous phases. Two-dimensional approximation substantially
underpredicts the mean speed of the current and thus will overestimate the arrival
time. In the inertial and viscous phases, the coherent Kelvin–Helmholtz vortices are
drawn closer to the front and, thus, influence the speed of the front substantially.
On the other hand, in the slumping phase, the coherent vortices are farther upstream
of the head of the current and do not affect the front velocity nearly as much. As
a consequence, in the slumping phase, both two-dimensional and three-dimensional
simulations predict the same propagation speed.
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Härtel, C., Meiburg, E. & Necker, F. 2000b Analysis and direct numerical simulation of the
flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip
boundaries. J. Fluid Mech. 418, 189–212.

Hoult, D. 1972 Oil spreading in the sea. Annu. Rev. Fluid Mech. 4, 341–368.

Huppert, H. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents
over a rigid horizontal surface. J. Fliud Mech. 121, 43–58.

Huppert, H. 1998 Quantitative modelling of granular suspensions flows. Phil. Trans. R. Soc. Lond.
A 356, 2471–2496.

Huppert, H. & Simpson, J. 1980 The slumping of gravity currents. J. Fluid Mech. 99, 785–799.
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